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ABSTRACT

Counting the number of floating-point operations (FLOPs) in Transformers is a useful way to estimate
compute requirements and measure efficiency. As training runs get larger and larger (thus more
expensive) it becomes more important to understand how many FLOPs we need to do and how well
we utilize our hardware.

1 Counting FLOPs in Transformers

One commonly used method for counting FLOPs is from the OpenAI scaling law paper [Kaplan et al., 2020] which uses

Cforward+backward ≈ 6N

for estimating the number of FLOPs per token during the training of a decoder-only Transformer where N is the number
of non-embedding parameters in the model. To derive this we can look at Table 1 they provide for FLOP counts of
various components of the model for the forward pass.

Nonlinearities, biases, normalizations, and residuals are not counted as they turn out to be negligible. Let’s explain each
operation and variable here:

• Embed: learned token embeddings and learned positional embeddings.

– dmodel is the dimensionality of the residual stream.

• Attention: QKV: linear layer in multi-head self-attention to project input into queries, keys, and values.

– nlayer is the number of layers.
– dattn is the dimensionality of the output of multi-headed attention, which is equal to dkey nheads.

* dkey is the dimension of the key, query, and value projections.
* nheads is the number of attention heads in a layer.
* In practice, Transformers are implemented such that dattn = dmodel.

• Attention: Mask: dot-product between query and keys.

– nctx is the context/sequence length.

• Attention: Project: linear layer to project concatenated attention heads output to dmodel.

• Feedforward: two linear layers in the MLP block.

– dff is the size of the output dimensionality of the first linear layer.

* dff = 4 dmodel is commonly used.

• De-embed: linear layer to obtain logits over vocabulary.

– nvocab is the number of tokens in the vocabulary.
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Table 1: Kaplan et al. [2020] FLOPs per token.
Operation Parameters FLOPs per Token

Embed
(
nvocab + nctx

)
dmodel 4 dmodel

Attention: QKV nlayer dmodel 3 dattn 2nlayer dmodel 3 dattn

Attention: Mask − 2nlayer nctx dattn

Attention: Project nlayer dattn dmodel 2nlayer dattn dmodel

Feedforward nlayer 2 dmodel dff 2nlayer 2 dmodel dff

De-embed − 2 dmodel nvocab

Total (Non-Embedding) N = 2 dmodel nlayer
(
2 dattn + dff

)
Cforward = 2N + 2nlayer nctx dattn

Combining all the non-embedding FLOPs terms gets us

Cforward = 2nlayer dmodel 3 dattn + 2nlayer dattn dmodel

+ 2nlayer 2 dmodel dff + 2nlayer nctx dattn

= 2
(
2 dmodel nlayer (2 dattn + dff)

)
+ 2nlayer nctx dattn

= 2N + 2nlayer nctx dattn.

for the forward pass. They note though that they drop the last term, which is context-dependent, because when
dmodel > nctx/12 it becomes negligible.

We can see this with a quick calculation using GPT-3 (nlayer = 96, nctx = 4096, dattn = 12288) as an example

Cforward = 2
(
175× 109

)
+ 2 · 96 · 4096 · 12288

=
(
350× 109

)
+

(
9.7× 109

)
.

which shows that the context-dependent term makes up < 3% of the FLOP count. So the number of FLOPs can be
simplified to just

Cforward ≈ 2N

The factor of 2 can be explained by the fact that matmuls consist of a 2 FLOP multiply-accumulate operation (one
multiply and one add) for each element in a weight matrix. We can then realize that that the backward pass must account
for another 4N of FLOPs since we need to do twice the matmuls that we do during the forward pass [Bahdanau, 2022].
This gets us to the Cforward+backward ≈ 6N equation.

We can then multiply by some number of tokens D to estimate the total FLOPs needed for training on those D tokens.
Doing this we get C = 6DN .

Another method of calculating Transformer FLOPs is presented in DeepMind’s Chinchilla scaling law paper [Hoffmann
et al., 2022]. Table 2 shows their equations for forward pass FLOPs.

Like the first method, DeepMind also assumes the backwards pass has 2 times the FLOPs of the forward. Unlike
OpenAI, DeepMind includes the FLOPs from embeddings and logits (de-embed) as well as the softmax in attention and
the application of the attention pattern to the values. Also it’s important to note that OpenAI’s method is FLOPs per
token while DeepMind’s is FLOPs per sequence. This doesn’t fundamentally change anything but it’s important to
remember in order to use either method correctly. Overall the difference between this method and C = 6N tends to be
pretty minimal as shown in Table A4 (Appendix F) of the Chinchilla paper.

If you want to count the FLOPs of your own transformer I’ve provided a FLOPs calculator app in Appendix A.
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Table 2: Hoffmann et al. [2022] FLOPs per sequence.
Operation FLOPs per Sequence
Embeddings 2nctx nvocab dmodel

Attention: QKV 2nctx 3 dmodel
(
dkey nheads

)
Attention: QK logits 2nctx nctx

(
dkey nheads

)
Attention: Softmax 3nheads nctx nctx

Attention: Reduction 2nctx nctx
(
dkey nheads

)
Attention: Project 2nctx

(
dkey nheads

)
dmodel

Feedforward 4nctx
(
dmodel dff

)
Logits 2nctx dmodel nvocab

Total Embeddings + nlayers × (Attention + Feedforward) + Logits

2 Using FLOPs to measure efficiency

Counting the number of FLOPs in our models grounds us in the reality of how much raw compute we need to run them.
As training runs and models get bigger and bigger it means, of course, that training and serving these models gets more
expensive. As we occupy precious resources like a A100s or H100s it becomes important to try to crunch the numbers
that we need to crunch as quickly as the hardware will physically allow (emphasis on the "need" which we’ll get to).
To get a sense of this we will want to look at how many FLOPs/second (FLOPS, with a big S, will be used to refer to
floating point operations per second and FLOPs, with a little s, is used for floating point operations with no unit of
time) we execute and compare it against the theoretical peak FLOPS of our hardware. In practice, we’ll never be able to
achieve that peak, but it’s useful to know how far away we are from it.

One method that can be used for measuring training efficiency is hardware FLOPS utilization (HFU). This approach
is the ratio of all FLOPs we execute per second to the theoretical peak FLOPS. This would take into account all the
FLOPs we estimate for a regular forward+backward pass, but also redundant computation we need to do in order to
train large models on the current hardware like rematerialization for activation checkpointing 1. While this method of
measurement can be useful, the inclusion of computation like rematerilization can make it seem like our training is
more efficient than it really is. Ultimately, if we could train these models without tricks like activation checkpointing
we would. It’s only there as a work around due to constraints of current hardware and being able to eliminate it one day
would be efficient. What we really care about is only the FLOPs we need to do to train the model in theory which is just
the forward+backward FLOPs, or the model FLOPs.

The best practice now for reporting LLM training efficiency is known as model FLOPs utilization (MFU) which was
proposed in Google’s PaLM paper [Chowdhery et al., 2022]. The idea is to focus on how efficiently we executed just
the necessary model FLOPs. The calculation is quite simple as all we need to do is multiply our FLOPs count by the
observed throughput (tokens/sequences per second), and then divide by the theoretical peak FLOPS of our hardware.

MFU =
CD

P

where C is the model’s FLOPs per token, D is the observed tokens per second, and P is the theoretical peak FLOPS.

For example, when using the fp16/bf16 formats an A100 has a theoretical peak of 312 teraFLOPS (TFLOPS)2. If we
use the 6N estimate for forward+backward FLOPs and are training a 125M parameter model using an A100 and we
have throughput of 200,000 tokens per second then our MFU is

1If we can’t store activations in memory then we can do activation checkpointing by throwing out the activations after they aren’t
needed anymore in the forward pass and then re-computing (a.k.a rematerializing) them during the backward pass. If done for all
activations this would amount to an extra forward pass and thus our C = 6N would increase to C = 8N .

2NVIDIA A100 Datasheet

3

[NVIDIA A100 Datasheet](https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf)


Transformer FLOPs

MFU =
6ND

P

=
6 · 125× 106 · 200× 103

312× 1012

= 0.48.

Which means we achieved 48% of the theoretical peak FLOPS. With this method if we are doing something like
activation checkpointing this will hurt our MFU, but it wouldn’t necessarily hurt our HFU. Conversely, if we could get
away with not using activation checkpointing then our MFU would improve. This isn’t to say HFU is worthless though.
If we need to use activation checkpointing, HFU can help gauge the efficiency of our rematerilization implementation.
In the long run though we should generally want to optimize for MFU and it also allows fairer comparison of efficiency
across different training set ups.

In practice, the range of MFU for language models can vary widely depending on model size, hardware3, and
implementation details, but generally range between 10− 65% [Portes et al., 2023]456.

3 Scaling of FLOPs

As we scale the size of Transformers it can be useful to know how different components of the model contribute to the
computational cost [Roller, 2022, He, 2022, Timbers, 2023]. Let’s look at how the FLOPs of these components (using
the operations in the DeepMind table) contribute to the total compute as we scale the model.

The plot above shows this evolution using the GPT-3[Brown et al., 2020]/OPT[Zhang et al., 2022] model family (with a
sequence length of 4096). As we can see, the Embeddings and Logits become a very miniscule portion of FLOPs
while the matmuls of the linear layers in Attention: QKV and Feedforward become dominant.

A useful way to look at this is to divide the components of the model into two buckets: terms that scale linearly
with sequence length and those that scale quadratically. The terms that scale quadratically with sequence length are
Attention: QK logits, Attention: Softmax, and Attention: Reduction. All other terms (Embeddings,
Attention: QKV, Attention: Project, Feedforward and Logits) scale linearly with sequence length.

3Although MFU normalizes according to a hardware’s theoretical peak FLOPs there can be many factors that impact this including
memory-bandwidth, cross-device/cross-node communication bandwidth, etc.

4See section Multinode Scaling of MosaicBERT.
5MosaicGPT Training Benchmarks
6See section 4.1 of PaLM [Chowdhery et al., 2022]
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We can calculate FLOPs for various model sizes and look at how these terms evolve as the number of parameters
increases.

For the smallest models the quadratic attention terms make up over 30% of the FLOPs, but this steadily decreases.
Somewhere between 13B and 30B it starts to account for < 10% of FLOPs. The dominance of the "linear" terms is
explained by the fact that the size of the weight matrices in linear layers does scale quadratically but with respect to
dmodel. So by making our model wider we know that we’ll be increasing the portion of FLOPs that come from the linear
layers.

We can also look at the scaling of these components from the view of a fixed model size but varying sequence length.

This shows for a 175B parameter model how much the quadratic terms contribute to total FLOPs as sequence length
scales. For the smallest sequence lengths (i.e. 256 or 512) the quadratic terms make up < 1% of FLOPs. After the 8192
mark they then make up > 10% and then hit 31% for a 32K length sequence.

So at large scales the quadratic nature of attention only makes up a fraction of the model’s FLOPs even at longer
sequence lengths.
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Although the scope of this post is FLOPs bound (pun intended), when it comes to profiling and optimizing models there
is much more to consider. Here are some helpful resources to read more in that direction:

• Transformer Inference Arithmetic
• Making Deep Learning Go Brrrr From First Principles
• Data Movement Is All You Need: A Case Study on Optimizing Transformers
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https://huggingface.co/spaces/adamcasson/transformer-flops-calculator

6

https://kipp.ly/blog/transformer-inference-arithmetic/
https://horace.io/brrr_intro.html
https://arxiv.org/abs/2007.00072
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://medium.com/@dzmitrybahdanau/the-flops-calculus-of-language-model-training-3b19c1f025e4
https://medium.com/@dzmitrybahdanau/the-flops-calculus-of-language-model-training-3b19c1f025e4
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2204.02311
https://www.mosaicml.com/blog/mosaicbert
https://twitter.com/stephenroller/status/1579993017234382849
https://twitter.com/stephenroller/status/1579993017234382849
https://twitter.com/cHHillee/status/1579913387021979649
https://twitter.com/cHHillee/status/1579913387021979649
https://twitter.com/cHHillee/status/1579913387021979649
https://twitter.com/finbarrtimbers/status/1643621208112390147
https://twitter.com/finbarrtimbers/status/1643621208112390147
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2205.01068
https://huggingface.co/spaces/adamcasson/transformer-flops-calculator/tree/main
https://huggingface.co/spaces/adamcasson/transformer-flops-calculator


Transformer FLOPs

B FLOPs counting methods in code

OpenAI FLOPs per token (Python code)

def openai_flops_per_token(n_layers, n_heads, d_model, n_ctx, n_vocab, ff_ratio=4):
"""Open AI method for forward pass FLOPs counting of decoder-only Transformer
"""
d_attn = d_model // n_heads
d_ff = d_model * ff_ratio

embeddings = 4 * d_model
attn_qkv = 2 * n_layers * d_model * 3 * (d_attn * n_heads)
attn_mask = 2 * n_layers * n_ctx * (d_attn * n_heads)
attn_project = 2 * n_layers * (d_attn * n_heads) * d_model
ff = 2 * n_layers * 2 * d_model * d_ff
logits = 2 * d_model * n_vocab

return embeddings + attn_qkv + attn_mask + attn_project + ff + logits

DeepMind FLOPs per sequence (Python code)

def deepmind_flops_per_sequence(n_layers, n_heads, d_model, n_ctx, n_vocab, ff_ratio=4):
"""DeepMind method for forwad pass FLOPs counting of decoder-only Transformer
"""
d_attn = d_model // n_heads
d_ff = d_model * ff_ratio

embeddings = 2 * n_ctx * n_vocab * d_model

attn_qkv = 2 * n_ctx * 3 * d_model * (d_attn * n_heads)
attn_logits = 2 * n_ctx * n_ctx * (d_attn * n_heads)
attn_softmax = 3 * n_heads * n_ctx * n_ctx
attn_reduce = 2 * n_ctx * n_ctx * (d_attn * n_heads)
attn_project = 2 * n_ctx * (d_attn * n_heads) * d_model
total_attn = attn_qkv + attn_logits + attn_softmax + attn_reduce + attn_project

ff = 2 * n_ctx * (d_model * d_ff + d_model * d_ff)

logits = 2 * n_ctx * d_model * n_vocab

return embeddings + n_layers * (total_attn + ff) + logits

Table A1: Vision Transformer FLOPs per Image
Operation FLOPs per Image
Embeddings 2npatches dpatch dpatch nchannels dmodel

Attention: QKV 2nctx 3 dmodel
(
dkey nheads

)
Attention: QK logits 2nctx nctx

(
dkey nheads

)
Attention: Softmax 3nheads nctx nctx

Attention: Reduction 2nctx nctx
(
dkey nheads

)
Attention: Project 2nctx

(
dkey nheads

)
dmodel

Feedforward 4nctx
(
dmodel dff

)
Logits 2 dmodel nclasses

Total Embeddings + nlayers × (Attention + Feedforward) + Logits
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C FLOPs counting in Vision Transformer (ViT)

Extending these methods to a standard ViT is straight forward and the main difference we have to account for is the
patch embeddings and logits (highlighted below). Using the DeepMind method for FLOPs counting, we can modify it
as such for a ViT with a classification head in Table A1.

• npatches is the number of patches in our image.
• dpatch is the length of the side of a patch in pixels.

– For example, dpatch = 16 means one patch is of size 16 px × 16 px.
• nchannels is the number of channels in the input image.
• nctx = npatches + 1 to account for the prepending of a learnable [CLS] token.
• Logits is a linear layer for predicting nclasses using a single token as input (e.g., the [CLS] token, mean pool

of image tokens, etc.).

For example, if our input image is an RGB image of size 224px × 224px and we have non-overlapping patches of size
16px × 16px then npatches = 196 and nctx = 197.

Since the patch embedding layer is applied to non-overlapping patches, we can also easily express it in terms of the
total number of pixels in the image

Cembeddings = 2npixelsnchannelsdmodel
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